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Abstract
Irreducible representations (irreps) of a compact Lie group G, of class one
w.r.t. a Lie subgroup H are those that contain the identity irrep of H once
in their decompositions w.r.t. H. In the case of G = SU(4) and H =
S(U(2) ⊗ U(2)), the class one irreps are identified, and for them a general
formula for their decomposition into irreps of H is given. This admits a
useful graphical presentation. The relevance of these results to the solution
of the Schrödinger equation of SU(4)/S(U(2) ⊗ U(2)) and the state labelling
difficulties encountered in implementing this solution, are discussed. For
G = SU(n + 1) and H = S(U(n − 1) ⊗ U(2)), n � 4, the class one irreps
of G, and hence the spectrum of the corresponding Schrödinger equation, have
also been determined.

PACS number: 02.20.Qs

1. Introduction

In order to describe the aims and output of this paper, we need to introduce some concepts and
give some notation. First, we come to the term deficit or labelling deficit for a homogeneous
space G/H , where H is a Lie subgroup of a compact Lie group G. We suppose the state
labelling problem for providing a canonical completely labelled basis for the states of a
generic irreducible representation (irrep for short in this paper) is solved for G and for H, as is
the case for, e.g., SU(n) or SO(n), but not G2. Let g and h be the numbers of labels involved
in the cases of G and H, and let lh be the rank of H. The deficit D of the space G/H is then
defined to be

D = g − (h + lh). (1)
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The number D is the number of labels that must be adjoined to the labels provided by H to give
a complete labelling of the states of a generic irrep of G. If D = 0 then H gives a canonical
labelling, as for G = SU(n+1) and H = U(n), but for D > 0 a much less favourable situation
prevails. Second, referring again to the homogeneous space G/H , and following [1], we say
that an irrep of G is of class one w.r.t. the subgroup H of G if its decomposition into irreps of
H contains the identity representation of H. If each class one irrep of G contains the identity
representation of H exactly once, then H is said to be a massive subgroup of G. We already
know that U(n) [2, 3] is a massive subgroup of SU(n + 1) and show here that S(U(2)⊗U(2))

is a massive subgroup of SU(4). A result, from [1], can now be stated. If f (g) is any suitable
function on compact G constant on the left H -cosets of a massive subgroup H of G, then it has
an expansion in terms of the basis functions of the class one irreps of G, and furthermore each
class one irrep is involved exactly once in this expansion. This key result is needed because
the Schrödinger equation on G/H is solved in terms of such functions f (g).

In two previous papers [2, 3], we have obtained by separation of variables a complete
set of solutions of the Schrödinger equation of the complex manifolds CP 2 and CP n =
SU(n + 1)/U(n), which are homogeneous spaces of rank 1 and deficit 0, details of the
spectrum having already been known [4]. Here we wish to consider the acquisition of the
same information for manifolds of higher deficit. It will soon become clear that this is a
decidedly non-trivial task, increasingly so for increasing deficit. Accordingly we begin by
studying a suitably simple example, namely

SU(4)/S(U(2) ⊗ U(2)) (2)

of rank 2 and deficit 1. Needing some convenient notation, we write

G(4, 2, C) = SU(4)/S(U(2) ⊗ U(2)) (3)

since this is a Grassmannian manifold, as indeed is CP n = G(n + 1, 1, C). We also write
H(2, 2, 1) = S(U(2)⊗U(2)), sometimes referred to loosely as SU(2)⊗SU(2)⊗U(1). The
general Grassmann manifold

G(n + m,m, C) = SU(n + m)/S(U(n) ⊗ U(m)) (4)

for integral n,m is a Hermitian symmetric space of rank min(m, n), and deficit

D = (n − 1)(m − 1) (5)

which is 0 for CP n and 1 for (3). Another family

SO(n + 2)/SO(n) ⊗ SO(2) (6)

consists of Hermitian symmetric spaces of rank 2 and deficit

D = s − 1 (n + 2) = 2s + 1 and D = s − 2 (n + 2) = 2s. (7)

The space (2), SU(4)/S(U(2)⊗U(2), is isomorphic to the n = 4 member of this family with
D given correctly by (7). For information about spaces of the kind mentioned here, see [5].

In this paper, we confine our attention to the group theoretic preliminaries to the solution
process of the Schrödinger equation on G(4, 2, C). First, we must determine the class one
irreps of SU(4), i.e. irreps which are class one w.r.t. its subgroup H(2, 2, 1), showing in the
process that it is a massive subgroup of SU(4). Using the Weyl character formula of SU(4)

twice, we show that these are the irreps

{2r + 2s, r + 2s, r} = (r, 2s, r) r, s ∈ N+. (8)

It follows from the key result [1] noted above that the eigenvalues of the quadratic Casimir
operator C(2) of SU(4) for these irreps give the spectrum of the Hamiltonian of G(4, 2, C)
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Table 1. Irreps (r, t, r) of SU(4), of class one for even t, with their dimensions and eigenvalues
of C(2).

(0, 0, 0) (1, 0, 1) (2, 0, 2) (3, 0, 3) (4, 0, 4) (5, 0, 5) (6, 0, 6)

1 15 84 300 825 1911 3920

0 1 5
2

9
2 7 10 27

2

(0, 1, 0) (1, 1, 1) (2, 1, 2) (3, 1, 3) (4, 1, 4) (5, 1, 5) (6, 1, 6)

6 64 300 960 2450 5376 10 584
5
8

15
8

29
8

47
8

69
8

95
8

125
8

(0, 2, 0) (1, 2, 1) (2, 2, 2) (3, 2, 3) (4, 2, 4) (5, 2, 5) (6, 2, 6)

20 175 729 2156 5200 10 935 20 825
3
2 3 5 15

2
21
2 14 18

(0, 3, 0) (1, 3, 1) (2, 3, 2) (3, 3, 3) (4, 3, 4) (5, 3, 5) (6, 3, 6)

50 384 1470 4096 9450 19 200 35 574
21
8

35
8

53
8

75
8

101
8

131
8

165
8

(0, 4, 0) (1, 4, 1) (2, 4, 2) (3, 4, 3) (4, 4, 4) (5, 4, 5) (6, 4, 6)

105 735 2640 7020 15 625 30 855 55 860

4 6 17
2

23
2 15 19 47

2

(0, 5, 0) (1, 5, 1) (2, 5, 2) (3, 5, 3) (4, 5, 4) (5, 5, 5) (6, 5, 6)

196 1280 4374 11 200 24 200 46 656 82 810
45
8

63
8

85
8

111
8

141
8

175
8

213
8

(0, 6, 0) (1, 6, 1) (2, 6, 2) (3, 6, 3) (4, 6, 4) (5, 6, 5) (6, 6, 6)

336 2079 6825 16 940 35 700 67 431 11 7649
15
2 10 13 33

2
41
2 25 30

to within an overall multiplicative constant, and dim(r, 2s, r) gives the degeneracy of the
corresponding energy levels, except when accidental degeneracies occur. One example of the
latter concerns (1, 6, 1) and (5, 0, 5), both of class one; for each of these C(2) has eigenvalue
10, given that the normalization of C(2) is such that (1, 0, 1) = ad has eigenvalue 1. In fact,
this stage of the process can be completed for G(n + 1, 2, C), the class one irreps of SU(n + 1)

in this context being the irreps

(r, s, 0n−4, s, r) r, s ∈ N+ (9)

in highest weight notation, so that details of the spectrum of the Schrödinger equation follow.
Table 1 displays relevant class one irreps of SU(4), and some others, together with their

dimensions and the eigenvalues of C(2).
Second (cf the role of the corresponding decompositions in the case of CP n [2, 3]), one

needs the complete decompositions of irreps of (r, 2s, r) of SU(4) into irreps H(2, 2, 1) that
arise when one restricts from SU(4) to the subgroup. This has been accomplished here: one
finds that the result can be given in a surprisingly simple form, one that furthermore can be
very nicely presented diagrammatically. The result in question is (35) of section 3.1, and
graphical displays for various (r, t, r), t odd as well as even, are to be found in section 5. One
feature of the decompositions is the occurrence of degeneracy. Let I, I3 and J, J3 be labels of
angular momentum type for the SU(2) factors of H(2, 2, 1), and let U be the eigenvalue of
the U(1) generator. Then irreps (I, I3, J, J3, U) of H(2, 2, 1) occur with a degeneracy, which
can be completely lifted, it turns out, by grouping the U values, for each fixed set of I, I3, J, J3

values, into sets −K � U = K3 � K , and attaching a formal spin label K to the set. Thus
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the set of six labels (I, I3, J, J3,K,K3) gives a non-degenerate labelling of the H(2, 2, 1)

irreps that arise in all decompositions. We stress that no recognizable SU(2) transformation
properties can be associated with the labels K,K3, nor is K associated, as an eigenvalue, with
any operator, but the empirical procedure described works, and the displays below all reflect
it. Actually these use integral labels x = 2I, y = 2J, z = 2K , because the character work
carried out in the derivation of decompositions more smoothly (no fractions) in this notation.

The occurrence of degeneracy is a feature encountered for G(4, 2, C) because it is of
deficit 1, being absent for manifolds such as CP n. It is related to the assignment of a
central role to H(2, 2, 1) in solving the state labelling problem for states of irreps of SU(4).
Section 4 provides discussion of some aspects of state labelling problems for G/H of deficit
D > 0, providing reference to and comment regarding the significant body of previous work
on the topic. For G of rank l and dimension r, it is well known [6] that one needs a complete
commuting set of 1

2 (r − l) operators to provide, via their simultaneous eigenvalues, a complete
labelling of an orthogonal basis for the states of the irreps of G. For SU(4) this number is
1
2 (15 − 3) = 6. Use of a basis adapted to CP 3 features the U(3), or loosely SU(3) ⊗ U(1),
subgroup of SU(4). Since SU(3) provides five labels, U(3) provides the required six, so
that CP 3 is of deficit zero. It follows that the solution by separation of variables for the
Schrödinger equation of CP 3, and likewise CP n [3], proceeds to a successful conclusion
without meeting any obstacle. This is in marked contrast to what happens for G(4, 2, C) when
one employs, as one must, an SU(4) basis adapted to the subgroup H(2, 2, 1): this yields
only five of the six operators needed for a complete set, so that G(4, 2, C) is of deficit 1.
The degeneracy noted in the previous paragraph of course reflects this. Although the label K
mentioned there empirically lifts the degeneracy, we remark again that it lacks the status of
being the eigenvalue of any known operator. In fact the solution by separation of variables of
the Schrödinger equation for G(4, 2, C) is stalled at present for want of a suitably tractable
sixth operator: one reaches a partial differential equation in two variables instead of a single
radial equation as for CP n. It is not obvious, on this basis, how to give a general treatment
of it that reflects the now known decomposition of class one irreps of SU(4) into H(2, 2, 1)

irreps.
Our main results then are

(i) the identification of the irreps (r, 2s, r), where r and s are integers, of SU(4) of class one
relative to H(2, 2, 1),

(ii) the explicit decomposition (35) of the irreps (r, t, r) of SU(4), where r and t are integers,
into H(2, 2, 1) irreps and

(iii) the generalization (32) of (i) to SU(n + 1) and S(U(n − 1) ⊗ U(2)), for n � 4.

We remark on two papers which touch on matters close to the work of this paper. First,
in [7] we formulated the Lagrangian dynamics of motion on G(n + m,m, C) as a nonlinear
realization of SU(n + m) in which the subgroup S(U(n) ⊗ U(m) is realized linearly. It
follows that we know the Hamiltonian of the Schrödinger equation for G(4, 2, C) in terms
of Goldstone coordinates, but not, until the state labelling problem is solved, in terms of a
complete set of separation variables. Second, when SU(6) was being studied as a symmetry
group of the hadrons, [8] discussed the decompositions of irreps of SU(6) with respect to
its subgroup H(4, 2, 1) = SU(4) ⊗ SU(2) ⊗ U(1). Using character methods different from
those of this paper a good body of explicit decompositions was obtained. The method used
has been applied to giving spot checks on a few of the results given here.

This paper is organized as follows. Section 2 uses the Weyl character formula for SU(4)

in the identification of irreps class one w.r.t. H(2, 2, 1), and also gives the generalization
(iii) for SU(n + 1). Section 3 begins by presenting, with the aid of the empirical label K,
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the general decomposition formula expressing characters of (r, t, r) in terms of H(2, 2, 1)

characters, proceeds to the easy proofs for the special cases (0, t, 0) and (r, 0, r), continues by
sketching the means by which the latter proof can be extended to (r, t, r) for t = 1, 2, . . . . In
fact, the procedure can be adapted to give an inductive proof of (35), but this is not included
in the text. The state labelling problem is the subject of section 4. In section 5, displays of
the H(2, 2, 1) decompositions of (r, t, r) are presented, as tables 2A–H, for 0 � r, t � 3.
Scrutiny of these displays indicates they contain a great deal of structure. This should suffice
to make it obvious how to write down directly the display for any other case. The numbers
displayed give the z = 2K values at each point (x, y), and the corresponding degeneracies of
irreps

(
I = 1

2x, I3, J = 1
2y, J3, U

)
can be inferred from them; e.g. the U = 0 value at the

point (x, y) = (2, 2) of the irrep (2, 3, 2) is three-fold degenerate.

2. Irreps of G(4, 2, C) of class one w.r.t. H(2, 2, 1)

2.1. Weyl branching formulae

The Young tableaux description {l1, l2, l3} of an irrep of SU(4) uses curly brackets and integers
such that l1 � l2 � l3 � 0. The highest weight notation (λ1, λ2, λ3) uses parentheses and
integers λ1, λ2, λ3 all � 0. The connection between the two is given by

λ1 = l1 − l2 λ2 = l2 − l3 λ3 = l3. (10)

We wish to identify the irreps that are of class one w.r.t. the subgroup H(2, 2, 1) =
SU(2) ⊗ SU(2) ⊗ U(1). For this purpose we shall proceed in two steps each based on
an application of the Weyl branching formula [9], last section of chapter 5, or [10], chapter 14
for the branching of an irrep of SU(n + 1) w.r.t. its SU(n) × U(1) subgroup. First for n = 3
[11] we write

χ({l1, l2, l3}, ε) =
l1∑

m1=l2

l2∑
m2=l3

l3∑
m3=0

χ({m1 − m3,m2 − m3}, η)ρm−3l/4 (11)

where m = m1 + m2 + m3, l = l1 + l2 + l3. Here {m1 − m3,m2 − m3} denotes an SU(3) irrep
in the Young tableaux notation. Also the SU(4) parameters have been written in the form

ε = (ρ−1/4η, ρ−3/4) (12)

appropriate to the restriction from SU(4) to SU(3) ⊗ U(1), with η for SU(3) and ρ for
corresponding to the U(1) generator

Z = 1
4 diag(1, 1, 1,−3). (13)

Writing

η = (σ 1/3τ 1/2, σ 1/3τ−1/2, σ−2/3) (14)

we restrict the SU(3) element in (11) to its SU(2) ⊗ U(1) subgroup, using parameters which
correspond to the SU(3) generators

I3 = 1

2




1 0 0
0 −1 0
0 0 0


 Y = 1

3




1 0 0
0 1 0
0 0 −2


. (15)

Next we use the SU(3) branching formula

χ({m1 − m3,m2 − m3}, η) =
m1∑

p1=m2

m2∑
p2=m3

χ(p1 − p2, τ )σp1+p2−2m/3. (16)
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Here, with 2I = p1 − p2, the SU(2) character involved is

χ(2I, τ ) =
k=+I∑
k=−I

τ k = τ I+1/2 − τ−I−1/2

τ 1/2 − τ−1/2
. (17)

Substitution of (16) into (11) would yield the decomposition appropriate to restriction on the
subgroup with generators I, Y, Z of SU(4) represented by

I3 = 1

2




1 0 0 0
0 −1 0 0
0 0 0 0
0 0 0 0


 Y = 1

3




1 0 0 0
0 1 0 0
0 0 −2 0
0 0 0 0


 Z = 1

4




1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −3


.

(18)

However, we need a decomposition w.r.t. the subgroup H(2, 2, 1) with generators I, J, U ,
where I and J are the commuting generators of the two SU(2) subgroups of H(2, 2, 1). Thus
the matrices we use for our Cartan subalgebra generators are I3, J3, U with I3 given by (18)
and

J3 = 1

2




0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1


 U = 1

4




1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


. (19)

Here U is the U(1) generator that commutes with I and J. To accomodate this point of view,
we change our SU(4) parametrization from

ε = (ρ1/4σ 1/3τ 1/2, ρ1/4σ 1/3τ−1/2, ρ1/4σ−2/3, ρ−3/4) (20)

to

ε = (φ1/4τ 1/2, φ1/4τ−1/2, φ−1/4λ1/2, φ−1/4λ−1/2) (21)

where τ, λ, φ are associated evidently with I3, J3, U .
We thus finally reach the formula

χ({l1, l2, l3}, ε) =
l1∑

m1=l2

l2∑
m2=l3

l3∑
m3=0

m1∑
p1=m2

m2∑
p2=m3

χ(p1 − p2, τ )λm−l/2−p/2φ(2p−l)/4 (22)

where m and l are as above and p = p1 + p2.

2.2. Occurrence of the identity irrep of H(2, 2, 1)

Equation (22) allows immediate identification of conditions under which the identity irrep of
SU(2)⊗SU(2)⊗U(1) with generators I, J, U occurs in the irrep {l1, l2, l3} of SU(4). These
include

p1 = p2 2m = l + p l = 2p. (23)

Since p1 = p2 necessarily requires p1 = m2 = p2, (23) implies

m2 = 1
4 l. (24)

Since m2 is integral, it follows that we require that l is divisible by 4. Just as an irrep of the
first SU(2) needs labels I, I3, so also the second one needs J, J3, and J has not yet been
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brought into the picture. We can achieve this by looking at the portion of (22) that contains
all the terms with I = U = 0. These are

l1∑
m1=l2

l2∑
m3=l3

λm1+m3−l/2 = χ(l3, λ)χ(l1 − l2, λ) =
∑

r

χ(2r, λ) (25)

where, as a result of the SU(2) Clebsch–Gordan series, the upper limit on the sum over r is
1
2 (l1 − l2 + l3), and the lower is 1

2 |l1 − l2 − l3|. Also J = 2r is the second SU(2) irrep label,
and we see that J = 0 occurs in (25) exactly once if

l1 − l2 = l3. (26)

The conditions under which the identity irrep of H(2, 2, 1) occurs in the decomposition of the
SU(4) irrep {l1, l2, l3} = (λ1, λ2, λ3) w.r.t. H(2, 2, 1) are thus

l1 − l2 = l3 and 1
4 (l1 + l2 + l3) ∈ N+. (27)

Since the identity irrep occurs once in the decomposition iff these conditions are satisfied, it
follows that H(2, 2, 1) is a massive subgroup of SU(4) in the sense of [1]. The conditions
(27) imply that the highest weight labels λ1, λ2, λ3 of the class one irreps of SU(4) satisfy

λ1 = λ3 and λ2 ∈ 1
2 N+ (28)

so that we can say that the irreps of SU(4) of class one w.r.t. to H(2, 2, 1) are

(r, 2s, r) where r, s ∈ N+. (29)

These irreps (see, e.g., [12]) have dimension given by

dim(r, t, r) = 1
12 (1 + t)(1 + r)2(2 + r + t)2(2r + t + 3) (30)

and eigenvalue

c2(r, t, r) = 1
4

(
r2 + rt + 1

2 t2 + 3r + 2t
)

(31)

of the quadratic Casimir operator of SU(4), the normalization having been chosen so that for
the adjoint irrep c2(1, 0, 1) = 1. For t = 2s, (31) gives, to within an overall multiplicative
constant, the energy eigenvalues of the Schrödinger equation of G(4, 2, C), and then (30)
gives their degeneracy. Note that (31) implies that c2(r, 2s, r) ∈ 1

2 N+ for all integers r, s.
Table 1 gives data for some low values of r, t .

2.3. Irreps of SU(n + 1) of class one relative to H(n − 1, 2, 1)

The procedure of sections 2.1 and 2.2 can be generalized more or less directly to identifying
the irreps of SU(n + 1) of class one relative to SU(n − 1) ⊗ SU(2) ⊗ U(1). We find that, for
n � 4, these are the irreps

(r, s, 0n−4, s, r) r, s ∈ N+ (32)

in the highest weight notation. In the n = 5 case of SU(6) and SU(4) ⊗ SU(2) ⊗ U(1),
decompositions are given in [8] of about 30 irreps of relatively low dimension. These all
conform to the identification (32). One sees there that (1, 0, 0, 0, 1) = ad = 35, (0, 1, 0,

1, 0) = 189 and (2, 0, 0, 0, 2) = 405 are of class one.
The identification (32) enables us, referring to [12], to state e.g. that the spectrum of

the Schrödinger equation on G(6, 2, C) involves energy levels given, to within an overall
multiplicative constant, by

c2(r, s, 0, s, r) = 1
6 (r2 + 2rs + 2s2 + 5r + 8s) (33)

of degeneracy, in the absence of accidental cases, given by

dim(r, s, 0, s, r) = 1

28335
[(1 + r)(1 + s)(2 + s)(2 + r + s)

× (3 + r + s)(4 + r + 2s)]2(3 + 2s)(5 + 2r + 2s). (34)
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3. Decomposition of (r, t, r) into irreps of H(2, 2, 1)

3.1. Statement of the result

Writing x = 2I, y = 2J, z = 2K , the required decomposition is

χ(r, t, r, τ, λ, φ) =
r∑

p=0

2p∑
x=0

t∑
k=0

χ(x + k, τ )χ(y + k, λ)χ(z + t − k, φ) (35)

where

y = 2p − x z = min(x, y). (36)

In (35), all χ(· , τ ), χ(· , λ) are true SU(2) characters, associated with the two SU(2)

subgroups of H(2, 2, 1). But χ(· , φ) is not a true SU(2) character: there is no implication
that there is a spin K such that K3 = U and such that K2 and K3 commute with I2, I3, J2, J3.
Of course K3, as the U(1) generator, has the required commutation relations; it is K2 that has
not been defined at all. The quantity χ(z, φ) arises empirically but demonstrably from the
observation that, for each term χ(x + k, τ )χ(y + k, λ) of the triple sum in (35), the factors
come out in such a way that they can be arranged into (perhaps more than one) sum of the sort∑

j

φj = χ(z, φ) z = 2jmax = −2jmin. (37)

The labels z of the sums in question can be seen to be necessary and sufficient to resolve all
degeneracies completely. The class one irrep (1, 2, 1) = 175 gives a simple illustration. It
has x = y = 1 or I = J = 1

2 states with U values U = −1, 0, 0, 1 exhibiting degeneracy for
U = 0. It is natural to group the four states into formal spin type multiplets with K = 1, 0, i.e.
supposing that linear combinations of the two U = 0 states can be assigned to the K = 1, 0
multiplets. All sets of U values that arise for given products χ(x + k, τ )χ(y + k, λ) in (35)
admit such a treatment. The displays in table 2 for various (r, t, r) provide many examples.
It is easy by inspection to read the degeneracy of any (x, y, U) state off the displays, and to
infer their values for more larger irreps than shown. There is actually much structure to be
noted in the displays, appreciation of which plays a part in understanding some aspects of the
work described below.

It is a simple matter to check that (35) agrees with (30). The general term of (35) gives a
contribution

(x + k + 1)(y + k + 1)(z + t + k + 1) (38)

to the dimension, and the result follows.

3.2. Proof for (0, t , 0)

The basic task in general is to rearrange the five-fold sum in (22) so as to collect λ-powers into
true characters χ(· , λ), after which the groupings of φ-powers into formal characters χ(· , φ)

have to be tackled. The latter simply emerge in a suitable form.
The special case of (0, t, 0), of class one only for even t, is easy. In

χ(0, t, 0) =
t∑

m2=0

t∑
p1=m2

m2∑
p2=0

χ(p1 − p2, τ )λm2−p/2φ(p−t)/2 (39)

we exchange the orders of summations so as to bring the sum on m2 to the far right of the
three summations, and then perform it explicitly. We get

χ(0, t, 0) =
t∑

p2=0

p1∑
p2=0

χ(p1 − p2, τ )χ(p1 − p2, λ)φ(p1+p2−t)/2. (40)
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The double sum here can straightforwardly be converted into a double sum over k = p1 − p2

and c = (p1 + p2 − t)/2, giving

χ(0, t, 0) =
t∑

k=0

χ(k, τ )χ(k, λ)

(t−k)/2∑
c=−(t−k)/2

φc =
t∑

k=0

χ(k, τ )χ(k, λ)χ(t − k, φ). (41)

This is in agreement with (35) for r = 0, and gives rise to displays like those of table 2A.

3.3. Proof for (r , 0, r)

In this case (22) gives

χ(r, 0, r) =
2r∑

m1=r

r∑
m3=0

m1∑
p1=r

r∑
p2=m3

χ(p1 − p2, τ )λm−2r−p/2φ(p−2r)/2. (42)

It is necessary to reverse the orders of the first and third, and of the second and fourth sums.
This enables each of the sums over m1 and m3 to be performed, and leads after minor
relabellings to

χ(r, 0, r) =
r∑

p=0

r∑
q=0

χ(2r − p − q, τ )χ(p, λ)χ(q, λ)φ(p−q)/2. (43)

Making use of the Clebsch–Gordan series for SU(2), this converts directly into the result

χ(r, 0, r) =
r∑

p=0

2p∑
x=0

χ(x, τ )χ(2p − x, λ)χ(c, φ) (44)

where c = min(x, 2p − x), also in agreement with (35) for t = 0, so that k = 0 also.
Triangular displays of obvious nature emerge, as illustrated in table 2 of section 5.

3.4. Proof for (r , t , r) for increasing t

For t = 1 (22) gives

χ(r, 1, r) =
2r+1∑

m1=r+1

r+1∑
m2=r

r∑
m3=0

m1∑
p1=m2

m2∑
p2=m3

χ(p1 − p2, τ )λm−2r−1−p/2φ(p−2r−1)/2 (45)

with m,p, l as before. We treat the contributions arising from the two terms of the sum
over m2 separately. For the m2 = r contribution, we separate out the contribution A1 from
the p1 = m1 term of the sum over p1, leaving a remainder B1 that is easily calculated by
the method of section 3.3 for (r, 0, r). For the m2 = r + 1 contribution, we separate out the
contribution A2 from the p2 = m3 term of the sum over p2, leaving a remainder B2 that is
likewise easily calculated by the method of section 3.3 for (r, 0, r). We find

B1 + B2 =
r∑

p=0

r∑
q=0

χ(2r − p − q, τ )χ(p, λ)χ(q, λ)(φ(p−q+1)/2 + φ(p−q−1)/2). (46)

Then, again as in section 3.3, we find

B1 + B2 =
r∑

p=0

2p∑
x=0

χ(x, τ )χ(2p − x, λ)(χ(c + 1, φ) + χ(c − 1, φ)) (47)

where c = min(x, 2p − x), with twice as many states at each point (x, 2p − x) as (44) yields.
Thus, (47) provides the part of the display for any (r, 1, r) which occupies the same triangle
as would the full display for (r, 0, r). The contributions A1 and A2 fit together easily to give
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the rest (a single line of entries) of the (r, 1, r) display. We have

A1 + A2 =
r∑

p=0

r∑
q=0

χ(2r + 1 − p − q, τ )χ(p + q + 1, λ)φ(p−q)/2

=
2r∑

x=0

χ(x + 1, τ )χ(2r − x − 1, λ)χ(c, φ) (48)

where c = min(x, 2r − x).
If one compares the sum S = A1 + A2 + B1 + B2 and the t = 1 case of (35), one sees that

they coincide, most easily by comparing each with an appropriate graphical display.
The methods applied to (r, t, r) for t = 0, 1 can still fairly easily be employed to prove

the t = 2 results. There are three terms in the m2 sums now and the contributions from two
specific terms must be extracted therefrom in each case. The three contributions remaining
after these subtractions give the part of the display expected to occupy the same triangle in
(x, y) plane as would the display for (r, 0, r). The separated terms then are fitted together,
naturally and easily, to give the rest of the display. While it is much easier to do the calculation
itself than to convey the easily recognizable nature of the path being followed in words, one
would at this point expect to prove (35) in general by induction on t. The demonstration of
the inductive step is however much too ponderous to be presented here.

The result (35) goes under the heading of branching formula. Reference to the work of
mathematicians on this topic can be found in [10, 13]. The case of G(n+ 1, 2, C) is not treated
in these monographs. Some selected references to the large body of papers on branching
formulae in theoretical physics are given in section 4.

4. State labelling problem

There is a great deal of good literature addressing the problem of state labelling. General
treatment of it is found in [14], which introduces a key concept, that of the integrity basis.
Referring to the labelling of the states of irreps of a compact Lie group G in a basis adapted
to its Lie subgroup H, [14] proves the existence of a finite basis of independent H-scalar
operators in the enveloping algebra of G, and explains how this is calculated. Whenever H
has a deficit p w.r.t. G, i.e. when H fails by a number p of operators to yield a complete set
of commuting operators to use to solve the state labelling problem for the irreps of G, the
integrity basis yields 2p elements [15], so that any p independent functions of them provides
the completion of the required complete set. The deficit 1 example G = SU(3),H = O(3) is
given in [14], the methods explained there offer a practical solution of the problem. Following
[14] there is an extensive body of work treating other cases of interest. The deficit 2 case
of G = SU(4),H = SU(2) ⊗ SU(2), with no U(1) factor, is comprehensively analysed in
[16], the motivation coming from the Wigner SU(4) spin–isospin multiplet theory. Most of
the other works can be traced from [17] or [18]. The latter paper contains discussion of SU(4)

irreps, giving results similar in nature to the results in section 2. Our class one irreps (with
H = H(2, 2, 1)) are in fact degenerate irreps of SU(4) in the sense that this word is used in
[18], because λ1 = λ3 = r implies that the cubic Casimir operator of SU(4) vanishes for the
class one irreps. Although the methods of [18] could readily be adapted to produce the result,
(29), derived in section 2.2, details given in section 2.2 are in any case needed in the discussion
of decomposition formulae for class one irreps, and in addition yield the more general result
of section 2.3.

The paper [19] presents an integrity basis for the case of interest here, with G = SU(4)

and H = H(2, 2, 1). As noted, H(2, 2, 1) provides only five of the six operators that full
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solution of the state labelling problem needs. The paper cited tells us that we may use any
function of two H invariant operators as the sixth member of the G(4, 2, C) complete set. Of
these, one is cubic and one is quartic in SU(4) generators. However, the procedures followed
are not canonical. They give no clear advice as to how to make an explicit choice of sixth
operator in the present example, nor how best to proceed at a similar stage in general. And in
fact we wish to choose our sixth operator in a different way.

4.1. The sixth operator for labelling states of irreps of SU(4)

In our work, we have used a subset I, I3, J, J3, U , of the SU(4) generators as basis for the
subgroup H(2, 2, 1). Of the remaining eight generators, four each are positive root and
negative root operators. It is easily arranged that the positive ones form a tensor operator

Tmµ m,µ = ± 1
2 (49)

of rank 1/2 w.r.t. each of I and J, with U = 1/2. From this one can construct an operator S+

which is bilinear in the Tmµ and scalar w.r.t. each of I and J, for which U = 1. The negative
root operators similarly yield the U = −1 scalar S− = S+

†, so that

[I, S±] = 0 [J, S±] = 0 [U, S±] = ±S±. (50)

Thus S± are themselves useful as raising and lowering operators for U. Our intention is to use,
as our sixth operator

W = [S+, S−] (51)

which belongs to the identity irrep of H(2, 2, 1). Even though S± function as raising and
lowering operators for U, we cannot hope that the commutator in (51) closes on a multiple of
U, and thereby enable an SU(2) view of the label K of the previous section to materialize. In
fact W is cubic in the generators of SU(4), and must be closely related to the cubic operator(s)
used in [19]. We have checked fully that the operator W of (51), appropriately normalized,
coincides with the operator UV S–UV T of [19], plus an admisssible tail of terms involving
I2, J2, U, C(2), where the last one is the quadratic Casimir of SU(4). Thus use of W as sixth
operator is consistent with the general discussion of [19]. It should also be convenient in
practice.

5. Tables of H(2, 2, 1) content of some SU (4) irreps

In the following tables, the entries at each point (x, y) give the dimensions of all the K = 1
2z

multiplets belonging to x = 2I, y = 2J .

Table 2A. The decompositions of 6 = (0, 1, 0), 20 = (0, 2, 0) and 50 = (0, 3, 0).

3 3 3 1
2 2 1 2 2
1 1 1 2 1 3
0 2 0 3 0 4

y/x 0 1 2 3 y/x 0 1 2 3 y/x 0 1 2 3
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Table 2B. The decompositions of 15 = ad = (1, 0, 1) and 64 = (1, 1, 1).

3 3 1
2 1 2 2 2
1 2 1 3, 1 1
0 1 1 0 2 2

y/x 0 1 2 3 y/x 0 1 2 3

Table 2C. The decompositions of 175 = (1, 2, 1) and 384 = (1, 3, 1).

5 5 1
4 1 4 2 2
3 2 2 3 3 3, 1 1
2 3 3, 1 1 2 4 4, 2 2
1 4, 2 2 1 5, 3 3
0 3 3 0 4 4

y/x 0 1 2 3 4 y/x 0 1 2 3 4 5

Table 2D. The decompositions of 84 = (2, 0, 2) and 300 = (2, 1, 2).

5 5 1
4 1 4 2 2
3 2 3 3, 1 3
2 1 3 2 2 4, 2 2
1 2 2 1 3, 1 3, 1 1
0 1 1 1 0 2 2 2

y/x 0 1 2 3 4 y/x 0 1 2 3 4 5

Table 2E. The decompositions of 729 = (2, 2, 2) and 1470 = (2, 3, 2).

7 7 1
6 1 6 2 2
5 2 2 5 3 3, 1 3
4 3 3, 1 3 4 4 4, 2 4, 2 2
3 4, 2 4, 2 2 3 5, 3 5, 3, 1 3, 1 1
2 3 5, 3, 1 3, 1 1 2 4 6, 4, 2 4, 2 2
1 4, 2 4, 2 2 1 5, 3 5, 3 3
0 3 3 3 0 4 4 4

y/x 0 1 2 3 4 5 6 y/x 0 1 2 3 4 5 6 7

Table 2F. The decompositions of 300 = (3, 0, 3) and 960 = (3, 1, 3).

7 7 1
6 1 6 2 2
5 2 5 3, 1 3
4 1 3 4 2 4, 2 4
3 2 4 3 3, 1 5, 3 3
2 1 3, 1 3 2 2 4, 2 4, 2 2
1 2 2 2 1 3, 1 3, 1 3, 1 1
0 1 1 1 1 0 2 2 2 2

y/x 0 1 2 3 4 5 6 y/x 0 1 2 3 4 5 6 7
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Table 2G. The decomposition of 2156 = (3, 2, 3).

9
8 1
7 2 2
6 3 3, 1 3
5 4, 2 4, 2 4
4 3 5, 3, 1 5, 3 3
3 4, 2 6, 4, 2 4, 2 2
2 3 5, 3, 1 5, 3, 1 3, 1 1
1 4, 2 4, 2 4, 2 2
0 3 3 3 3

y/x 0 1 2 3 4 5 6 7 8

Table 2H. The decomposition of 4096 = (3, 3, 3).

9 1
8 2 2
7 3 3, 1 3
6 4 4, 2 4, 2 4
5 5, 3 5, 3, 1 5, 3 3
4 4 6, 4, 2 6, 4, 2 4, 2 2
3 5, 3 7, 5, 3, 1 5, 3, 1 3, 1 1
2 4 6, 4, 2 6, 4, 2 4, 2 2
1 5, 3 5, 3 5, 3 3
0 4 4 4 4

y/x 0 1 2 3 4 5 6 7 8 9
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